This repository has been archived on 2024-05-31. You can view files and clone it, but cannot push or open issues or pull requests.
authentik/passbook/flows/management/commands/benchmark.py

117 lines
3.6 KiB
Python
Raw Normal View History

2020-09-27 19:17:21 +00:00
"""passbook benchmark command"""
from csv import DictWriter
from multiprocessing import Manager, Process, cpu_count
from sys import stdout
from time import time
from typing import List
from django import db
from django.core.management.base import BaseCommand
from django.test import RequestFactory
from structlog import get_logger
from passbook import __version__
from passbook.core.models import User
from passbook.flows.models import Flow
from passbook.flows.planner import PLAN_CONTEXT_PENDING_USER, FlowPlanner
LOGGER = get_logger()
class FlowPlanProcess(Process):
"""Test process which executes flow planner"""
def __init__(self, index, return_dict, flow, user) -> None:
super().__init__()
self.index = index
self.return_dict = return_dict
self.flow = flow
self.user = user
self.request = RequestFactory().get("/")
def run(self):
print(f"Proc {self.index} Running")
def test_inner():
planner = FlowPlanner(self.flow)
planner.use_cache = False
planner.plan(self.request, {PLAN_CONTEXT_PENDING_USER: self.user})
diffs = []
for _ in range(1000):
start = time()
test_inner()
end = time()
diffs.append(end - start)
self.return_dict[self.index] = diffs
class Command(BaseCommand):
"""Benchmark passbook"""
def add_arguments(self, parser):
parser.add_argument(
"-p",
"--processes",
default=cpu_count(),
action="store",
help="How many processes should be started.",
)
parser.add_argument(
"--csv", action="store_true", help="Output results as CSV",
)
def benchmark_flows(self, proc_count) -> str:
"""Get full recovery link"""
flow = Flow.objects.get(slug="default-authentication-flow")
user = User.objects.get(username="pbadmin")
manager = Manager()
return_dict = manager.dict()
jobs = []
db.connections.close_all()
for i in range(proc_count):
proc = FlowPlanProcess(i, return_dict, flow, user)
jobs.append(proc)
proc.start()
for proc in jobs:
proc.join()
return return_dict.values()
def handle(self, *args, **options):
"""Start benchmark"""
proc_count = options.get("processes", 1)
all_values = self.benchmark_flows(proc_count)
if options.get("csv"):
self.output_csv(all_values)
else:
self.output_overview(all_values)
def output_overview(self, values: List[List[int]]):
"""Output results human readable"""
total_max = max([max(inner) for inner in values])
total_min = min([min(inner) for inner in values])
total_avg = sum([sum(inner) for inner in values]) / sum(
[len(inner) for inner in values]
)
print(f"Version: {__version__}")
print(f"Processes: {len(values)}")
print(f"\tMax: {total_max * 100}ms")
print(f"\tMin: {total_min * 100}ms")
print(f"\tAvg: {total_avg * 100}ms")
def output_csv(self, values: List[List[int]]):
"""Output results as CSV"""
proc_count = len(values)
fieldnames = [f"proc_{idx}" for idx in range(proc_count)]
writer = DictWriter(stdout, fieldnames=fieldnames)
writer.writeheader()
for run_idx in range(len(values[0])):
row_dict = {}
for proc_idx in range(proc_count):
row_dict[f"proc_{proc_idx}"] = values[proc_idx][run_idx] * 100
writer.writerow(row_dict)